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Abstract5

An m�n real matrix Φ is said to satisfy the Restricted Isometry Pro-6

perty (RIP) of order k if it nearly preserves the `2-norm of all vectors7

in Rn that have no more than k nonzero entries. Matrices that sa-8

tisfy the RIP are useful in compressed sensing, a fast-expanding field9

of mathematics and signal processing. The m�n matrices with entries10

�1 and �1 and scaled by 1{?m are often mentioned as an example11

of matrices that satisfy the RIP with high probability. We show that12

if n ¤ 2m�1, then the precise count of these matrices that satisfy the13

RIP of order k � 2 is14

ρpm,nq � 2n
n�1¹

j�0

�
2m�1 � j

�
15

and the restricted isometry constants do not exceed 1� 2{m. If16

n ¡ 2m�1, then there are no scaled +1/-1 matrices of size m�n that17

satisfy the RIP, except for the order k � 1.18
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1 Introduction21

Compressive sensing consists in recovering large but sparse encoded datasets22

from small datasets. This is known to be feasible when the encoding is linear23

through a matrix that satisfies the Restricted Isometry Property. Compres-24

sive sensing is a rapidly expanding field in mathematics, statistics, computer25

science and signal processing. There is abondant and fast-growing literature.26
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The survey article of Candès [2] provides a good coverage of the topic and27

references. The Digital Signal Processing group at Rice University main-28

tains a comprehensive online portal of compressive sensing resources [6].29

30

A real matrix is said to satisfy the Restricted Isometry Property if it nearly31

preserves the `2-norm of sparse vectors. For specificity, let Φ be an m�n real32

matrix, let δ P R¥0, and let k P r1..ns. The matrix Φ satisfies the Restricted33

Isometry Property of order k with constant δ, or more concisely, is RIPpk, δq,34

if for every column vector x P Rn,1, we have35

p1 � δq }x}2`n
2
¤ }Φx}2`m

2
¤ p1 � δq }x}2`n

2
, (1.1)36

provided the vector x is k-sparse, i.e. has no more than k nonzero entries.37

For any subset T � r1..ns, let ΦT denote the submatrix of Φ supported on38

r1..ms � T . Then the matrix Φ is RIPpk, δq if and only if for every subset39

T � r1..ns of cardinality |T | � k, the eigenvalues of the matrix Φt
T ΦT , a k�k40

symmetric positive-semidefinite matrix, lie in the interval r1 � δ, 1 � δs. The41

Restricted Isometry Constant of order k of Φ, denoted δkpΦq, is the smallest42

δ P R¥0 such that Φ is RIPpk, δq. Evidently, with σ denoting the spectrum43

of a square matrix, we have44

δkpΦq � max
!��1 � λ

�� : λ P σ�Φt
T ΦT

�
, T � r1..ns, |T | � k

)
. (1.2)45

The matrix Φ satisfies the Restricted Isometry Property of order k, or more46

concisely is RIPpkq, if δkpΦq   1, i.e. it if is RIPpk, δq for some δ   1. The47

importance of the RIP lies in that a RIP matrix enables compressed sam-48

pling. Candès and Tao [3] have provided RIP-based conditions that ensure49

that a sparse vector x is deterministically recoverable as the unique solution50

of minimal `n1 -norm of the equation Φx � y.51

52

Equation (1.2) shows that determining whether a particular matrix is RIPpkq53

will generally be a computing-intense effort. The most common examples54

of RIP matrices in the literature are asserted to be so with high probability,55

but not determiniscally. See Baraniuk, Davenport, DeVore and Wakin [1]56

for the three classical examples. The ability to deterministically establish57

whether matrices of interest are RIP is the subject of current concern and58

ongoing efforts. At the time of this writing, the respected blog of Terence59

Tao mentions this as an open problem [5]. Developments in this area include60

the work of DeVore [4].61

62
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Because63

δ1pΦq ¤ δ2pΦq ¤ � � � ¤ δn�1pΦq ¤ δnpΦq , (1.3)64

it is helpful to know the values of δkpΦq for low values of k. For instance,65

if δ2pΦq ¥ 1, then there is no hope that Φ would be RIPpkq for higher but66

more interesting orders k.67

68

This work focuses on one of the three classical examples: the m�n matrices69

whose entries are �1{?m and �1{?m. It is actually easy to calculate their70

restricted isometry constants of order two. Consider71

ρpm,nq �

$'&
'%

2n
n�1¹
j�0

�
2m�1 � j

�
if n ¤ 2m�1

0 if n ¡ 2m�1 .

72

We show that, of the 2mn possible matrices, ρpm,nq matrices Φ have73

δ2pΦq ¤ 1 � 2{m and the other matrices Φ have δ2pΦq � 1. So if n ¡ 2m�1,74

then none of the matrices are RIPpkq with k ¥ 2. (They all are RIPp1q with75

δ1pΦq � 0.)76

77

In the rest of the paper, all inner products and norms are with respect to78

the applicable canonical Euclidean structure; we will no longer use indices79

such as `n2 .80

2 The Restricted Isometry Property of Order Two81

Let Φ be a real m�n matrix with column vectors u1, . . . , un P Rm,1. From82

equation (1.2), we readily have83

δ1pΦq � max
1¤j¤n

∣∣∣1 � }uj}2
∣∣∣ . (2.1)84

Obtaining δ2pΦq is not much more difficult if all column vectors have norm85

one.86

Theorem 2.1. Suppose n ¥ 2 and }u1} � � � � � }un} � 1. Then87

δ2pΦq � max
1¤p q¤n

��xup, uqy
�� . (2.2)88

Proof. Let T � r1..ns with |T | � 2; let p, q P r1..ns such that p   q and89

T � tp, qu. We have90

Φt
T ΦT �

$'''%ut
p

ut
q

,///-vup uq

w �
$'''% }up}2 xup, uqy
xup, uqy }uq}2

,///- �
$'''% 1 xup, uqy
xup, uqy 1

,///- .91
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The eigenvalues of this matrix are 1 � xup, uqy and 1 � xup, uqy. Hence,92

equation (2.2) is an instance of equation (1.2). l93

Corollary 2.2. Suppose n ¥ 2 and }u1} � � � � � }un} � 1. If for every94

p, q P r1..ns with p � q, it holds that up � uq and up � �uq, then δ2pΦq   195

and Φ is RIPp2q. If there exist p, q P r1..ns with p � q such that up � uq or96

up � �uq, then δ2pΦq � 1 and Φ is not RIPpkq for any k ¥ 2.97

Proof. Given u, v P Rm,1 such that }u} � }v} � 1, we have
��xu, vy�� ¤ 1, and98

xu, vy � 1 ô u � v, and xu, vy � �1 ô u � �v. This remark along with99

Theorem 2.1 prove Corollary 2.2. l100

If the columns of Φ are taken from a prescribed finite set, then the presence101

of duplicate or opposite columns becomes likely, and even necessary, as the102

number n of columns grows. Corollary 2.2 shows that the RIP of order two103

then becomes unlikely to impossible. It is this observation that we make104

explicit for the scaled +1/-1 matrices in the next section.105

3 The RIP of Order Two for the Scaled +1/-1 Matrices106

Let Em be the set of column vectors in Rm,1 whose entries all equal
�1?
m

or107

�1?
m

. The set Em has 2m elements and they all have norm one. We consider108

the RIP of order two for the matrices whose column vectors are in Em.109

Lemma 3.1. Suppose m ¥ 2 and let u, v P Em such that u � v and u � �v.110

Then
��xu, vy�� ¤ 1 � 2

m
.111

Proof. Because u � v, there exists r P r1..ms such that ur � vr, or equi-112

valently ur � �vr; and because u � �v, there exists s P r1..ms such that113

us � �vs, or equivalently us � vs. The indices r and s are distinct because114

all entries of u and v are nonzero. Therefore we have115

ur vr � us vs � �u2
r � u2

s � � 1
m

� 1
m

� 0116

and117

��xu, vy�� �
�������
¸

1¤i¤m
i�r,s

uivi

�������
¤

¸
1¤i¤m
i�r,s

��ui vi

�� � pm� 2q 1
m

� 1 � 2
m
.118

l119
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The next result is a specialized version of Corollary 2.2. It readily obtains120

by combining Theorem 2.1 and Lemma 3.1.121

Theorem 3.2. Suppose m,n ¥ 2 and let Φ be an m�n matrix with column122

vectors u1, . . . , un P Em. If for every p, q P r1..ns with p � q, it holds that123

up � uq and up � �uq, then δ2pΦq ¤ 1 � 2
m

and Φ is RIPp2q. If there exist124

p, q P r1..ns with p � q such that up � uq or up � �uq, then δ2pΦq � 1 and125

Φ is not RIPpkq for any k ¥ 2. l126

Theorem 3.2 characterizes the scaled +1/-1 matrices that are RIPp2q in a127

fashion that allows as to count them.128

Theorem 3.3. Suppose m,n ¥ 2. Let ρpm,nq be defined by129

ρpm,nq �

$'&
'%

2n
n�1¹
j�0

�
2m�1 � j

�
if n ¤ 2m�1

0 if n ¡ 2m�1 .

(3.1)130

Among the 2mn matrices of size m�n whose entries are
�1?
m

and
�1?
m

,131

there are ρpm,nq matrices Φ such that δ2pΦq ¤ 1 � 2
m

; they are RIPp2q.132

For the remaining matrices Φ, we have δ2pΦq � 1; they are not RIPpkq for133

any k ¥ 2.134

Proof. For u1, . . . , un P Em, consider the the following property.135

P
�
u1, . . . , un

�
: @ q P r2..ns , @ p P r1..pq � 1qs , uq � up and uq � �up .136

For a single vector u P Em, let Ppuq simply be a tautology. Then:
�
The matrix Φ � �

u1, . . . , un

�
is RIPp2q�

ô P
�
u1, . . . , un

�
ô P

�
u1, . . . , un�1

�
and

�@ j P r1..pn� 1qs , un � uj and un � �uj

�
ô P

�
u1, . . . , un�1

�
and

�
un P Emztu1, . . . , un�1,�u1, . . . ,�un�1u

�
.

The instance of this equivalence for n � 2 yields137

ρpm, 2q � 2m � �2m � 2
�
,138

while for 3 ¤ n ¤ 2m�1, it leads to139

ρpm,nq � ρpm,n� 1q � �2m � 2 pn� 1q� .140
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It follows that if 2 ¤ n ¤ 2m�1, then141

ρpm,nq � ρpm, 2q
n�1¹
j�2

�
2m � 2 j

�
142

� 2m
�
2m � 2

� n�1¹
j�2

�
2m � 2 j

�
143

�
n�1¹
j�0

�
2m � 2 j

�
144

� 2n
n�1¹
j�0

�
2m�1 � j

�
.145

If n � 2m�1 � 1 and property P
�
u1, . . . , un�1

�
is true, then the set146

Emztu1, . . . , un�1,�u1, . . . ,�un�1u is empty and property P
�
u1, . . . , un

�
147

thus is false. Therefore, whenever n ¡ 2m�1, property P
�
u1, . . . , un

�
is148

always false, and consequently ρpm,nq � 0. l149

We see in equation (3.1) that the formula for ρpm,nq that applies if n ¤ 2m�1
150

actually applies for all n ¥ 2.151

Figure 3.1: Evolution of the proportion θpm,nq of scaled +1/-1 matrices of size
m�n that satisfy the RIP of order two, with respect to the number n of columns,
for four chosen values of the number m of rows. Each curve is labeled with the fixed
value ofm and the corresponding maximum value 1� 2{m of the restricted isometry
constants of order two. The horizontal axis shows the decimal logarithm values of
n. The left-most points of the curves are at n � 2, i.e. log10pnq � log10p2q � 0.3.
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We introduce the following number:152

θpm,nq � ρpm,nq
2mn

. (3.2)153

It represents the proportion of scaled +1/-1 matrices of size m�n that are154

RIPp2q. We have:155

θpm,nq �
n�1¹
j�1

�
1 � j

2m�1



. (3.3)156

The proportion θpm,nq increases with the number m of rows and decrease157

with the number n of columns. Figure 3.1 helps visualize the dependence of158

this proportion on matrix dimensions.159

4 Closing Notes160

This work contributes to making the occurrence of the Restricted Isome-161

try Property somewhat more deterministic and quantitative. We exploited162

properties of the set Em: it is nonempty and finite, all its elements have163

norm one, and it is closed under taking opposites. The method we used164

readily applies whenever these conditions are in effect. We actually have165

the following more general result.166

Theorem 4.1. Let m,n P Z¥2 and let E be a subset of Rm,1. Suppose that167

E is nonempty and finite, that all elements of E have norm one, and that168

the opposite of each element of E is in E. Then the cardinality |E| of E is169

even; let M P Z¥1 such that |E| � 2M . Let170

δ̂2pEq � max
 ��xu, vy�� : u, v P E, u � v, u � �v(171

and172

ΘpM,nq �
n�1¹
j�1

�
1 � j

M



.173

Then ΘpM,nq is the proportion of the m�n matrices with column vectors174

from E that are RIPp2q. For these RIPp2q matrices Φ, we have175

δ2pΦq ¤ δ̂2pEq   1 .176

For all other matrices Φ, we have δ2pΦq � 1; they are not RIPpkq for any177

order k ¥ 2. If n ¡M , then no m�n matrices with column vectors from E178

are RIPpkq for any order k ¥ 2. l179
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